Endothelial Glycocalyx Layer: A Possible Therapeutic Target for Acute Lung Injury during Lung Resection

نویسندگان

  • JiaWan Wang
  • AnShi Wu
  • Yan Wu
چکیده

Background Shedding of the endothelial glycocalyx layer (EGL) is known to occur during major surgery, but its degradation associated with minimally invasive video-assisted thoracoscopy (VATS) remains unclear. We investigated if serum biomarkers of EGL disruption were elevated during VATS lobectomy, and whether the urinary trypsin inhibitor (UTI) ulinastatin exerted a protective effect during this procedure. Materials and Methods Sixty ASA II-III lung cancer patients undergoing elective VATS lobectomy were divided equally into UTI and control groups. UTI group patients received intravenous UTI during surgery. Serum levels of syndecan-1 and heparan sulfate were examined before (T0) and at the end of surgery (T1). Serum albumin and hemoglobin were measured before surgery (BOD) and on the first postoperative day (POD1). Results In control group, syndecan-1 levels were significantly elevated at T1 compared with T0 (3.77 ± 3.15 versus 4.28 ± 3.30, P = 0.022⁎) and increased even more significantly in patients whose surgery lasted >3 h (3.28 ± 2.84 versus 4.31 ± 3.39, P = 0.003⁎⁎). Serum albumin levels on POD1 were significantly lower in control group compared with UTI group (32.63 ± 4.57 versus 35.76 ± 2.99, P = 0.031⁎). Conclusion EGL degradation occurs following VATS lobectomy. UTI can alleviate this shedding, thus helping preserve normal vascular permeability. Trail Registration This trial is registered with ChiCTR-IOC-17010416 (January 13, 2017).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyaluronan Regulation of Acute Lung Injury

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), have high mortality rates with few treatment options. A crucial factor in the pathology observed in ALI/ARDS is a disruption of the pulmonary endothelial barrier which causes leakage of fluid, protein and cells into lung airspaces. Degradation of the glycosaminoglycan hyaluronan (HA) by hyaluronidase e...

متن کامل

Acute Lung Injury Regulation by Hyaluronan.

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), have high mortality rates with few treatment options. An important regulatory factor in the pathology observed in ALI/ARDS is a disruption of the pulmonary endothelial barrier which, in combination with epithelial barrier disruption, causes leakage of fluid, protein and cells into lung airspaces. Degra...

متن کامل

FLUID RESUSCITATION AND MANAGEMENT IN ANESTHESIA Volume Management and Resuscitation in Thoracic Surgery

Lung injury following thoracic surgery is a major cause of morbidity and mortality. A consistent risk factor is excessive perioperative fluid administration, not only following pneumonectomy, but also after lesser lung resections and esophageal surgery. Recent insights into the pathophysiology of lung injury after thoracic surgery include the role of the endothelial glycocalyx, pulmonary endoth...

متن کامل

The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis...

متن کامل

Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017